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Time-dependent flows in an emptying filling box
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We examine the transient buoyancy-driven flow in a ventilated filling box that is
subject to a continuous supply of buoyancy. A rectangular box is considered and the
buoyancy input is represented as a turbulent plume, or as multiple non-interacting
plumes, rising from the floor. Openings in the base and top of the box link the
interior environment with a quiescent exterior environment of constant and uniform
density. A theoretical model is developed to predict, as functions of time, the density
stratification and the volume flow rate through the openings leading to the steady
state. Comparisons are made with the results of small-scale analogue laboratory
experiments in which saline solutions and fresh water are used to create density
differences. Two characteristic timescales are identified: the filling box time (Tf ),
proportional to the time taken for fluid from a plume to fill a closed box; and the
draining box time (Td), proportional to the time taken for a ventilated box to drain
of buoyant fluid. The timescale for the flow to reach the steady state depends on
these two timescales, which are functions of the box height H and cross-sectional area
S, the ‘effective’ opening area A∗, and the strength, number and distribution of the
buoyancy inputs. The steady-state flow is shown to be characterized by the ratio of
these timescales (µ = Td/Tf ) which is equivalent to the dimensionless vent area A∗/H 2.
A feature of these flows is that for µ>µc the depth of the buoyant upper layer may
exceed, or ‘overshoot’, the steady layer depth during the initial transient. The value
of µc is determined for both line and point-source plumes, and the sensitivity of the
developing flow to the distribution of buoyancy input assessed.

1. Introduction
We examine the transient flow induced by a semi-confined turbulent plume. The

term ‘semi-confined’ is used here to describe a situation where the flow in the plume
develops within a box, but the ambient fluid within the box is free to exchange with an
external environment through connections or vent openings. ‘Fully confined’ plumes
were examined by Baines & Turner (1969) in their ‘filling box’ paper. In a filling box
the plume rises to the top of the box and spreads out laterally to form a density
interface between the plume outflow and the ambient fluid. Over time this interface
descends towards the plume source as ambient fluid is entrained into the plume and
passes into the buoyant upper layer. They showed that the time for the box to fill
with buoyant fluid scaled on the floor area (S) and height (H ) of the box, and the
buoyancy flux (B) of the plume. This resulted in the ‘filling time’, Tf , of

Tf ∝ S

B1/3H 2/3
. (1.1)
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The authors also made predictions of the form of the vertical density stratification in
the box at large times. This work was extended by Worster & Huppert (1983) who
predicted the transient stratification within the box.

Ventilated boxes were investigated by Linden, Lane-Serff & Smeed (1990) who
looked at the transient draining of a box filled with fluid of buoyancy g′ relative
to the external ambient. The fluid in the box is connected to the external ambient
through vents in its top and base. They showed that the time taken to flush the box
scaled on the box floor area and height, the area of the two vents and the initial
buoyancy of the internal fluid. This led to the ‘draining time’, Td , of

Td ∝ S

A∗

(
H

g′

)1/2

(1.2)

where g′ = g�ρ/ρ is the reduced gravity of the buoyant layer, �ρ the density contrast
between the layers, ρ the density of the external ambient and A∗ the ‘effective’ area
of the upper and lower openings such that

a∗
b = 21/2cbab, a∗

t = 21/2ctat (1.3)

and
1

A∗2
=

1

a∗2
b

+
1

a∗2
t

(1.4)

where ab and at denote the areas of the base and top openings, respectively. The
symbols cb and ct denote the loss coefficients associated with flow through the bottom
and top openings, respectively. Note that (1.4) is valid if ab is greater than or roughly
equal to at . If the upper opening (assuming positively buoyant plumes) is significantly
larger than the base opening then there is the possibility of exchange flow through the
upper opening. We restrict our model to situations where the flow is unidirectional in
each vent. For high Reynolds number flows cb and ct are normally assumed constant
(≈0.6). However, Hunt & Holford (2000) and Holford & Hunt (2001) show that
the coefficients exhibit a density dependence. For simplicity we assume herein that
cb = ct =0.6.

Linden et al. (1990) combine their draining theory with a filling-box model and
examine ‘emptying filling boxes’. The case they examine is that of a single buoyant
point-source plume in a ventilated box. In this case a steady state is reached in which
there is a two-layer stratification. The upper buoyant layer drives a draining flow
through the vents. This flow is then balanced by the filling flow from the plume. In
the steady state the upper layer depth (H − h) depends only on the vent area, the box
height and the plume entrainment coefficient (α):

A∗

H 2C3/2
=

ζ 5/2
ss√

1 − ζss

(1.5)

where the subscript ss denotes steady state, C is given by

C = π

(
5

2πα

)1/3 (
6α

5

)5/3

(1.6)

for an axisymmetric plume with Gaussian profiles and ζ =h/H . The entire problem
can therefore be regarded as geometric, with the steady-state interface height being
a function of the box geometry only. This work was extended by Cooper & Linden
(1996) and Linden & Cooper (1996) for the case of two and multiple localized sources
of buoyancy of different strengths. Additional work on such emptying filling boxes
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includes Sandberg & Lindstrom (1990) who looked at forced flow through the box,
and Gladstone & Woods (2001) who looked at flow driven by a distributed buoyancy
source.

In this paper we re-interpret the parameter A∗/H 2C3/2 in (1.5) as being the ratio of
the two competing timescales Td and Tf , and examine the influence of these two times
on the transient development of the flow. We begin by developing a theoretical model
of the transients (§ 2) and then compare this with the results of analogue laboratory
experiments (§ 3). Conclusions are drawn in § 4.

2. Plumes in a ventilated box
We consider the transient buoyancy-driven flow and density stratification induced by

the introduction of continuous sources of buoyancy at floor level in a rectangular box
of height H and uniform cross-sectional area S (independent of height). Ventilation
openings, of area ab and at , made in the base and top of the box, respectively, connect
the interior environment to a quiescent exterior environment of constant density ρ.
We consider a buoyancy input from n equal non-interacting, localized sources of
buoyancy flux B , and that buoyancy transfers between the fabric of the box and the
fluid in the interior are negligibly small.

The turbulent plumes that develop above the buoyancy sources entrain ambient fluid
as they rise, and on reaching the top, spread radially outwards to form a buoyant layer
separated from the ambient layer below by a density interface. Following Baines &
Turner (1969) we ignore the outward motion from the plumes and assume that an
infinitesimally thin layer forms at time t =0. In practice a layer of non-zero depth
forms as a result of the radial outflows from the plumes. Our experiments indicate
that this initial layer thickness (≈0.1H )† scales on the plume width at z =H . As the
layer depth increases, the interface descends towards the plume source and, hence, the
layer is fed with increasingly buoyant fluid. Since the exterior fluid remains unaffected,
the pressure difference between the upper and lower levels on the inside becomes less
than the pressure difference between the upper and lower levels on the outside. This
developing hydrostatic pressure difference drives buoyant fluid out through the upper
openings and draws an equal volume of ambient fluid in through the lower openings.
The flow through each opening is assumed to be unidirectional. We also assume
that mixing between the incoming fluid and the buoyant layer is negligible and that
a displacement flow is thereby established and maintained. The volume flux of the
outflow increases as the layer becomes deeper and more buoyant and this flux begins
to balance the volume flux fed into the buoyant layer by the plumes. After a finite
time, a steady-state flow is approached in which the volume fluxes balance, the level
of the interface is constant and the stratification consists of two homogeneous layers
as confirmed in the experiments of Linden et al. (1990). Figure 1 shows schematics of
the transient and steady flow.

† This measurement of the plume outflow thickness is considerably less than the 0.25H reported
in the literature (see Manins 1979; Wong, Griffiths & Hughes 2001). We believe that this is due to
the experimental technique used to measure the thickness. Our experiments measured the outflow
depth using a dye attenuation technique, so only the buoyant portion of the outflow was measured.
Wong et al. (2001) measured the outflow thickness by examining the deflection of a vertical line
of dye. This latter technique provides a measure of the buoyant outflow depth including the depth
of any radial ambient flow induced by shear. As we are concerned with the development of the
buoyant layer in this work, we will use our measurements of outflow thickness.
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Figure 1. Schematics of a ventilated box containing non-interacting localized heat sources of
equal strength, showing the density interface: (a) descending during the initial transient and
(b) at steady state when the plume volume flow rate (ΣQp|z=H ) balances the outflow (Qout).

For the purposes of modelling the movement of the density interface we assume that
the buoyant upper layer is well-mixed during the transient as well as in the steady state.
Although one might expect a transient stratification similar to that of a filling box we
assume a well-mixed layer. Two points related to this assumption are noted. First, the
outflow from the plume is of finite thickness of order a tenth of the height of the box.
The dynamics of the finite thickness outflow tends to cause some mixing of the buoyant
upper layer, resulting in a more uniform distribution of buoyancy. Second, the flow
through the box is driven by the pressure difference between the inside and outside
induced by the buoyant layer. This pressure distribution is related to the integral of
the buoyancy over the depth of the layer. Therefore, for the purposes of our model, the
well-mixed assumption is similar to using top-hat profiles when modelling plumes. The
only source of error expected is that our model will tend to underpredict the buoyancy
of the fluid flowing out of the box. This will in turn lead to an underprediction of
the time taken for the buoyancy of the layer to reach a steady state.

2.1. Transient model for flow in a ventilated box

The rate of change in the depth (H − h) of the buoyant layer is determined by the
difference between the volume flow rate at which buoyant fluid is supplied (nQp)
to the upper layer via the n rising thermal plumes, and the volume flow rate at
which buoyant fluid drains out through the upper openings (Qout). By conservation
of volume, this may be expressed as

dV

dt
= nQp − Qout (2.1)

where V = S(H − h) is the volume of the buoyant layer. Conservation of buoyancy
for the upper layer requires that

dVg′

dt
= nB − Bout (2.2)

where g′ is the mean buoyancy of the upper layer, and Bout = g′Qout is the flux of
buoyancy out through the top openings. Note that we are assuming that there are no
buoyancy gains or losses through the box walls.

The volume flux Qp and buoyancy g′
p of a turbulent plume can be written in

terms of powers of the buoyancy flux B , the height z above the source, a lengthscale
L associated with the source, and a constant Ck that is a function of the plume
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entrainment coefficient and source geometry. In the most general form this yields

Qp = CkB
izjLk, (2.3)

g′
p =

B

Qp

= C−1
k B1−iz−jL−k (2.4)

(see Appendix A).
It is now possible to write equations for the time rate of change of the buoyant

layer depth (H − h) and of the average layer buoyancy (g′) using the plume flow rate
scalings given above, and the draining theory outlined by Linden et al. (1990):

d

dt
(H − h) =

1

S

(
nCkB

1/3hjLk − A∗
√

g′(H − h)
)
, (2.5)

d

dt
(g′(H − h)) =

1

S

(
nB − g′A∗

√
g′(H − h)

)
. (2.6)

We now introduce the non-dimensional interface height ζ and reduced gravity δ:

h = ζH, g′ = δC−1
k B2/3H −jL−k. (2.7)

Equations (2.5) and (2.6) can now be re-written as

dζ

dt
=

1

Td

√
δ(1 − ζ ) − 1

Tf

ζ j , (2.8)

dδ

dt
=

1

Tf

(
1 − ζ j δ

1 − ζ

)
, (2.9)

respectively, where the timescales Td and Tf are defined as

Td =
C

1/2
k Lk/2SH (j+1)/2

A∗B1/3
≡ S

A∗

(
H

g′
p|z=H

)1/2

, (2.10)

Tf =
S

nCkB1/3Hj−1Lk
(2.11)

which is equivalent to (1.1). The timescale Td is the ‘draining box’ time and is
proportional to the time taken for a buoyant layer of depth H and of buoyancy equal
to that in the plumes at height H to drain completely through openings of effective
area A∗ (see Linden et al. 1990). Tf is the ‘filling box’ timescale for n non-interacting
plumes each of buoyancy flux B (see Baines & Turner 1969). In other words, Td

relates to the draining of a ventilated box in the absence of a supply of buoyancy
and Tf relates to the filling of an unventilated box supplied with a constant buoyancy
flux from sources at floor level.

We can now fully non-dimensionalize equations (2.8) and (2.9) to obtain

dζ

dτ
=

1
√

µ

√
δ(1 − ζ ) − √

µζ j , (2.12)

dδ

dτ
=

√
µ

1 − ζ j δ

1 − ζ
(2.13)
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where the non-dimensional timescale τ and parameter µ are given by

t = τ
√

TdTf = τ

(
S2

nC
1/2
k A∗B2/3Lk/2H (j−3)/2

)1/2

, (2.14)

µ =
Td

Tf

=
nC

3/2
k L3k/2H (3j−1)/2

A∗ . (2.15)

This non-dimensionalization reduces the entire problem to a single parameter µ for
a given choice of plume geometry (j, k). The parameter µ is the ratio of the competing
timescales for draining and filling the box. For small µ, Td < Tf and the time taken to
drain the box is small compared to the time taken for the plumes to stratify (or fill) the
box. For large values of µ the filling time is smaller so the buoyant layer will grow to
a significant depth before the draining flow can balance the plumes’ input. We would
therefore expect that for larger µ it is possible that the buoyant layer will thicken at
such a rate that it reaches the steady-state interface height before the draining flow
can balance the filling flow. The buoyant layer thickness will therefore overshoot this
steady-state thickness. For smaller µ this overshoot will either be less pronounced
or disappear. Our numerical results indicate that there is a critical value µc above
which overshoot occurs. For a given cross-sectional area and height, µ is small for
large vent openings and large for small vent openings. When multiple plumes are
present, then for a given box geometry, µ increases linearly with the number of plume
sources. Also, µ is independent of B . This means that varying B will not affect the
steady-state interface height or the extent of any overshoot, only the time taken to
reach each height. The steady-state height is a function only of the box geometry
(A∗, H ) and the number and geometry of the plume sources (n, Ck, j, k) (see Linden
et al. 1990; Cooper & Linden 1996).

We can compare our model for the transient flow ((2.12) and (2.13)) with that of
Linden et al. (1990) by looking at the steady-state solution. In the steady state, both
time-derivative terms are zero and it is possible to solve for the buoyancy of the
upper layer:

δss = ζ −j
ss (2.16)

and then the layer thickness

1

µ2
=

ζ 3j
ss

1 − ζss

. (2.17)

Examining the case of n point source plumes, for which j = 5
3
, (2.17) becomes

1

µ2
=

ζ 5
ss

1 − ζss

=

(
A∗

nH 2C
3/2
0

)2

(2.18)

which is identical to the result of equation (2.12) in Linden et al. (1990).
In the limit of large µ, ζ → 0 and the steady-state height can be approximated by

ζss = µ−2/3j . (2.19)

This result is used to verify the validity of numerical solutions of the transient flow
equations presented later.

2.2. Initial transient

For the case of an interior initially at ambient density, we take the time τ = 0 as the
moment when the plumes first touch the top of the box. The initial conditions are
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Figure 2. Line plumes in a ventilated box with µ = {0.5, 1, 5, 10}. (a) ζ as a function of τ
and (b) δ as a function of τ .

therefore

δ = 1, ζ = 1 at τ = 0. (2.20)

Solution of the full set of equations (2.12), (2.13) subject to (2.20) was achieved
numerically using a simple finite-differencing scheme. To do this, the values of the
time derivatives at τ = 0 were required. Clearly dζ/dτ = −√

µ at τ = 0 (from (2.12)),

and we find that dδ/dτ = 1
2
j

√
µ (see Appendix B).

Numerical solutions were evaluated for 10−3 <µ< 105 from τ = 0 to τ =50. This
finishing time resulted in the interface height reaching a steady state for the full range
of µ considered. It is reasonable to expect that the steady state would be approached,
but never reached. However, given the large finish time of τ = 50 the flow approached
close enough to the steady state of (2.17) to be graphically indistinguishable.

The key parameters we consider in this model are: the interface height at peak
layer depth (maximum overshoot) (ζover) and at steady state (ζss), the layer buoyancy
at peak depth (δover) and steady state (δss), and the time taken to reach the peak depth
(τover) and steady state (τss,l). The time taken to reach the steady-state layer depth is
defined as the time taken (τss,l) for the ambient layer to reach 99% of its steady-state
depth (|ζ − ζss| < 0.01). We later compare this with τss,b, the time taken for the layer
buoyancy to reach 99% of the steady-state value (see figure 10). In the case where
the interface overshoots the steady state, τss,l is the time taken to overshoot and then
settle back to 99% of the steady-state interface height. τss,l was calculated in order to
verify that the choice of timescale was appropriate. The steady-state interface height
values (ζss(µ)) were compared with the theoretical values given by (2.17) to check the
accuracy of the numerical scheme. The numerical results are shown in figures 2 to 11.
Note that many of these figures are plotted on log − log scales so that greater detail
can be seen for small µ.

We also examine the conditions under which the buoyant layer depth exceeds the
predicted steady-state value during the transient. The range of µ values for which
this ‘overshoot’ occurs is evaluated. A critical value µc is introduced (and determined
in § 2.3) such that for µ>µc overshoot is predicted.

Figures 2 and 3 show typical profiles of ζ and δ as a function of τ for line and
point-source plumes, respectively. They show the deepening of the buoyant layer
over time, including the overshoot. The initial rate of change of the buoyant layer
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Figure 3. Point-source plumes in a ventilated box with µ= {0.5, 1, 5, 10}. (a) ζ as a function
of τ and (b) δ as a function of τ .

10–1 100 101 102 103 104 105
10–5

10–4

10–3

10–2

10–1

100

µ

ζ ζover  
ζss

10–1 100 101 102 103 104 105
100

101

102

103

104

µ

δ
δss

δover

(a) (b)

Figure 4. Plots of (a) ζover, ζss, and (b) δover and δss, for a line plume, as a function of µ.

increases with increasing µ. The initial increase in layer depth results in the layer
being supplied with increasingly buoyant fluid from the plumes, and a corresponding
increase in the buoyancy of the layer. Comparing the steady-state interface heights
it is clear that the line plume produces a deeper layer than the equivalent-strength
point-source plume. This is due to the greater volume flow rate in the line plume
(note that ζ > ζ 5/3 for ζ < 1 comparing (A 4) and (A 5)). At any given height the line
plume has a lower buoyancy than an equivalent plume above a point source. The
steady-state layer depth required to balance this flow will therefore need to be greater
for the line plume, yielding deeper layers.

Figures 4(a) and 5(a) show the steady state ζss and the peak ζover plotted against µ

for line and point-source plumes, respectively. As expected, the value of ζss decreases
from close to unity for small µ, to close to zero for large µ. This trend is shown for
both point-source and line plumes. For values of µ which do not result in overshoot,
i.e. µ < µc (as determined in § 2.3), ζover = ζss. For µ > µc the values of ζover are again
lower for each value of µ for line plumes compared to point-source plumes. Figures
4(b) and 5(b) show δss and δover (the buoyancy at the time of maximum overshoot).
For µ < µc, δover = δss; therefore, when the layer depth increases to the steady-state
value, the outflow volume and buoyancy fluxes driven by the buoyant layer exactly
match the rate of supply of volume and buoyancy from the plumes so that no
overshoot occurs. For larger µ the buoyancy of the layer is clearly lower than the
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Figure 5. Plots of (a) ζover, ζss, and (b) δover and δss, for a point-source plume,
as a function of µ.

10–1 100 101 102 103 104 105

10–4

10–3

10–2

10–1

µ

ζ s
s –

ζ o
ve

r

Line

Point source 
(a)

(ζ
ss

 –
ζ o

ve
r)

/ζ
ss

100 101 102 103 104 105
10–2

100

10–1

µ

Line

Point source 
(b)

Figure 6. (a) ζss − ζover and (b) (ζss − ζover)/ζss, for both point-source and line plumes,
as a function of µ.

steady-state value at the time of maximum overshoot, and this discrepancy increases
with increasing µ.

The amplitude of the overshoot (ζss − ζover) is depicted in figure 6(a) as a function
of µ. For small values of µ no overshoot is predicted, but for larger values of µ

the overshoot can be as high as 3.7% of the box height. The maximum overshoot
is slightly higher for point-source plumes, 3.7%, and occurs at a higher value of
µp ≈ 41.4 than for line plumes where the overshoot peaks at 3.4% at µl = 14.1.
The numerical solutions indicate no overshoot for line plumes when µl < µl.c = 0.35
and for point-source plumes when µp <µp.c = 0.27. A theoretical prediction for these
values of µc is presented in § 2.3.

It is also informative to examine the depth of the ambient layer lost during the
overshoot period and the time over which this loss is significant. The overshoot as a
fraction of the steady-state ambient layer depth is shown in figure 6(b). Although the
overshoot is only a small fraction of the box height, it can be a significant fraction
of the ambient lower layer depth when the lower layer is thin (i.e. for large µ). This
measure of overshoot becomes more significant as µ increases.
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layer depth (dashed line) and subsequent decay in layer depth towards the steady state (solid
line) for line plumes (a) and point-source plumes (b).

Figure 7 shows the time, τover, taken to reach ζover. The near vertical slope at
small µ indicates the approach of the singularity at the values of µ = µc at which
overshoot disappears. For µ > µc the time to reach ζover decreases with increasing µ.
It is somewhat counterintuitive that the time taken to establish a relatively deep peak
layer (for larger µ) is less than that required to establish a relatively shallow layer.
However, this is not inconsistent as we recall that µ is the ratio of the draining and
filling timescales (see (2.15)) and thus for large µ the filling time is small relative to
the draining time.

Figure 8 shows the time taken τss,l to reach the steady-state layer depth. The dashed
line in each plot is the time to reach ζss the first time, i.e. as the interface descends.
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The horizontal line represents the value of the volume fluxes at the predicted steady state.

The solid line is the time taken to return to ζss after overshooting, i.e. as the interface
ascends. The upper and lower lines are similar, having a straightforward time offset,
in all but two regions. Just above µ = µc, below which there is no overshoot, the
time taken to return to the steady state increases dramatically with decreasing µ.
This occurs because for µ close to µc overshoot is slight and at τover the volume and
buoyancy fluxes, supplied to and draining from the buoyant layer, are very closely
balanced. The ascent back to the steady-state layer depth is driven by the difference
between these two closely balanced flows and, therefore, takes a longer time than
less closely balanced flows. For µ < µc there is no overshoot, and the layer merely
increases to the steady layer depth.

The second difference occurs in the region of largest overshoot (figure 6). In this
region the time taken to reach the peak is shorter than for smaller µ (figure 7), but
as the overshoot is greater so is the time taken to ascend back to steady-state layer
depth after overshoot. The sharp bounds at either end of the bulge (figure 8) are due
to the definition of τss,l . When the overshoot is less than 1%, the value of τss,l is the
same as τover. However, when the overshoot is greater than 1% the value of τss,l will
diverge from τover because of the time taken to go from ζss to ζover and back. Were,
for example, 0.5% used as the steady-state criteria, the bulge would be wider, as the
range of µ for which the overshoot is greater than 0.5% of the box height is greater
than for 1%. The bulge would also be higher as the time taken to go from 0.5%
overshoot to ζover and back would be greater. However, the sharp bounds to the bulge
would remain.

Figure 9(a) shows the steady-state height for both line and point-source plumes
as a function of f (µ) = µ−2/3j . Based on the steady-state analytical predictions of
(2.19) these two lines should approach the straight line ζss = f (µ), which is also
plotted. Clearly the analytical solution and the numerical calculations closely agree
for f (µ) < 10−1.

To clarify the steady-state balance between dimensionless flow rates into (
√

µζ 5/3)
and out of (

√
δ(1 − ζ )/

√
µ) the buoyant layer (taken from the right-hand side of (2.12)

with j = 5/3) we plot these volume flow rates as a function of time for a point-source
plume with µ = 10 (figure 9b). This shows the volume flow rate into the layer from
the plume decreasing rapidly as the layer descends towards the plume source, and
the flow rate out increasing gradually. The lines intersect at the point of maximum
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Figure 10. Plot of τss,b as a function of µ. Dashed line for a point-source plume, and solid
line for a line plume.

overshoot, after which the flow rate out exceeds the flow rate in and the layer thins
as it approaches the steady state.

We also examine the time taken for the layer buoyancy to reach a steady state
(τss,b), defined as the time taken for the buoyancy to reach 99% of the steady-state
value. Values of τss,b are shown in figure 10. Clearly τss,b is considerably larger than
τss,l (see figure 8) for larger values of µ. When µ increases, ζss decreases and, as a
consequence, the volume flow rate into the upper layer decreases. The flow rate into
the upper layer is therefore smaller, while the buoyancy of the upper layer required to
balance the fluxes must increase. Consequently the buoyancy development lags behind
the development of the layer thickness. As mentioned earlier, our model will over-
estimate the buoyancy of the upper layer as we assume a well-mixed layer. However,
our results indicate that the development of the layer depth is much faster than the
development of the layer buoyancy. This indicates that any errors in modelling the
buoyancy development (such as our assumption of a well-mixed upper layer) will
have only a minor effect on predictions of transient layer depth.

2.3. Overshoot criteria

One of the key questions that this model raises is under what circumstances will the
buoyant layer overshoot the steady-state depth. To establish the value of µ at which
overshoot first occurs, we draw an analogy with a mass–spring–damper system and
the transition from over-damping to under-damping. This system can be written as a
second-order linear ODE,

ẍ + bẋ + cx = 0 (2.21)

where x denotes displacement from equilibrium. In matrix form this is[
ẋ

ẍ

]
=

[
0 1

−c −b

][
x

ẋ

]
. (2.22)
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Figure 11. τover as a function of µ, for both point-source and line plumes. The vertical lines
are µc taken from (2.25).

The eigenvalues of the matrix give the λ values of the full solution:

x = A1e
λ1t + A2e

λ2t . (2.23)

The system is over-damped when λ1 and λ2 are real and distinct. The system is
under-damped (implying overshoot of the equilibrium solution) when λ1 and λ2 are
complex conjugates.

Examining a linearization of equations (2.12) and (2.13) about their steady-state
values we obtain a similar equation:

[
ζ̇

δ̇

]
≈


∂ζ̇

∂ζ

∣∣∣∣
δ=δss ,ζ=ζss

∂ζ̇

∂δ

∣∣∣∣
δ=δss ,ζ=ζss

∂δ̇

∂ζ

∣∣∣∣
δ=δss ,ζ=ζss

∂δ̇

∂δ

∣∣∣∣
δ=δss ,ζ=ζss


[
ζ − ζss

δ − δss

]
=

[
A B

C D

] [
�ζ

�δ

]
(2.24)

for any given value of µ and j .
Drawing an analogy with the mass–spring–damper system above, we calculate

the eigenvalues of the matrix and establish the critical value of µc at which these
eigenvalues become complex. A numerical search was used to establish the following
result for point-source and line plumes respectively:

for j = 5
3
, µp.c = 0.25,

(2.25)
for j = 1, µl.c = 0.32.

For values of µ > µc the eigenvalues are complex, implying that overshoot is possible.
These values are very close to the values found through numerical integration of
(2.12) and (2.13) and can be seen more clearly in figure 11.

Although there is not exact agreement, the use of the under-damping analogy helps
to establish the region in which overshoot is likely to occur.
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3. Experiments
We have now developed a full solution to the problem of time-dependent flow

driven by an arbitrary number of equal plumes in an initially empty ventilated box.
However, in order to complete this model, a number of simplifying assumptions
have been made. The most significant of these is that the buoyant layer can be
regarded as well-mixed throughout the transient, and that the plumes spread out in
an infinitesimally thin layer when they first reach the top of the box. In order to
verify whether or not these assumptions result in an accurate prediction of the front
movement, a series of small-scale laboratory experiments were performed.

3.1. Experimental technique

The experiments were performed in a visualization tank of cross section 1.25 m ×
1.25 m that was filled to a depth of 1.5 m with fresh water. Two clear Perspex side
panels of the tank allowed us to see the flow. A clear Perspex box of cross section
0.5m × 0.5 m and height 0.2m was immersed in the visualization tank. A number of
circular holes (18 of 3 cm diameter and 26 of 5 cm diameter) in the top and bottom
of the box (the bottom also had one hole of 1 cm diameter and one of 0.5 cm) could
be opened or closed by removing or adding plugs. This box design allows µ to be
varied in the range 0.1 <µ< 35.

A salt solution was supplied to the box via a nozzle located in the centre of the
top face, producing a descending turbulent saline plume inside the box. The nozzle
was designed to produce a turbulent flow within one to two source diameters from
the point of release (figures 6 and 7 of Hunt & Linden 2001). The nozzle, of exit
diameter D = 0.5 cm, was mounted on a section of rigid plastic tubing. The vertical
distance between the nozzle exit and the base of the box could be varied by raising
or lowering the tubing before locking it into position with a grub screw. A constant
volume flow rate of salt solution was achieved using a constant-head apparatus. The
volume flow rate was measured using an in-line flowmeter and finely controlled with
a needle valve. To distinguish between regions of fresh and salt solution a food dye
was added to the plume and diffuse back-lighting used to light the experiments. A
schematic of the experimental setup is shown in figure 12.

The density of the fresh water and the saline solution was measured using
an Anton Paar DMA 35N density meter to an accuracy of 5 × 10−4 g cm−3. The
typical ranges of plume source volume flow rates and reduced gravities were
2.0 <Qp.0 < 2.5 cm3 s−1 and 70 < g′

p.0 < 150 cm s−2, respectively, giving buoyancy fluxes

in the range 140 <B < 375 cm4 s−3. The virtual origin of the plume source was located
using the technique presented by Hunt & Kaye (2001). The source conditions were
characterized using the parameter Γ ( = (5/4α)(Q2

p.0B/M
5/2
p.0 )) where Mp.0 is the source

momentum flux. For a pure plume Γ = 1, but if there is an excess of momentum flux
at the source the plume is considered to be forced (see Morton 1959). Conversely if
there is a deficit of momentum at the source compared to a pure plume the source is
regarded as lazy. The virtual origin was shown to be a function of the source radius
and Γ by Hunt & Kaye (2001). For our experiments the source conditions lead to
values in the range 0.8 <Γ < 1.5 assuming an entrainment coefficient of α = 0.09
and Gaussian profiles. In practice, volume flow rates and source buoyancies were
chosen from the ranges above to keep Γ close to 1 in order to maintain a pure
plume over the depth of the ambient layer. Therefore the virtual origin corrections
for these experiments were in the range 0.9 <zavs < 1.2 cm above the actual source.

The origin correction zavs then gives the corrected parameter µ̂ = Ĥ 2C3/2/A∗ where
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Figure 12. A schematic diagram of the ventilated box used in the experiments, showing the
openings and the plume source.

Ĥ = H +zavs . The corrected timescales T̂d and T̂f are also determined from (2.10) and

(2.11) with H replaced by Ĥ . Similarly, the corrected ambient layer depth is given

by ζ̂ = (h + zavs)/Ĥ . All measured values plotted have been corrected in this way,
although for convenience the ˆ has been dropped from symbols on the plots.

An experiment was begun by first removing by hand the desired number of plugs
from the upper and lower faces of the box. Any disturbances within the tank were
allowed to dissipate. A tap was then opened, supplying salt solution to the nozzle;
the needle valve was pre-set so that the desired flow rate was achieved immediately
on opening the tap. The upper opening area was typically a factor of two greater
than the lower opening area in order to maintain a low inlet velocity. This low inlet
velocity prevents the inflowing jets of fluid from disturbing the interface, and enabled
a sharp interface to be maintained. However, due to the geometry of the box, for
smaller values of µ (larger vent areas) we were unable to maintain this ratio, resulting
in disturbances on the interface that are discussed later.

3.2. Observations

3.2.1. The initial transients

A turbulent descending plume developed beneath the nozzle and on reaching the
base of the box spread radially outwards as a saline current. The current spread
to the box walls and a well-defined saline layer, with depth approximately equal to
the width of the plume at the base of the box, was then clearly visible. The current
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Plume

τ = 0.07 τ = 0.15

τ = 1.3τ = 0.82

Figure 13. A series of four images taken from an experiment with µ= 34.5. The left-hand side
of each image coincides with the (dyed) plume centreline. The layer depth is seen to increase
over time to a peak at τ = 0.82 and then decrease slightly. The final image shows a slightly
darker upper layer due to a small amount of mixing in the external ambient visualization tank.
We estimated the buoyancy of this upper layer to be about 1% of the lower layer buoyancy.

was observed to slosh up the sidewalls of the box before slumping back downwards.
This produced wave-like disturbances on the interface between the saline and fresh
water layers, which propagated along the interface and were reflected off the sidewalls
before gradually dissipating over time. The slumping also produced mixing between
the layers. Once the slumping motion had settled down this mixing stopped and the
only fluid crossing the density step was that entrained into the plume. Fluid from the
saline layer drained through the openings in the base of the box and was replaced
by fluid of ambient density passing in through the upper openings. The time origin
t = 0 was taken as the instant when the plume collided with the floor of the ventilated
box. This is in keeping with our model assumption that the plume spreads out in an
infinitesimally thin layer, and the resulting initial conditions (2.20). The digital image
analysis system DigiFlow (see Dalziel 1993) was used to track the position of the
interface over time. In order to observe as stable an interface as possible only the
vents on the left-hand side of the tank were opened, while the camera was pointed
at the right-hand side of the tank. For most µ the disturbances on the interface due
to the flow through the tank were minimal and were wave-like with no mixing across
the interface and, therefore, had no effect on the interface height. However, for small
µ the disturbances were more significant as discussed later in this section. Images
taken from an experiment are shown in figure 13.

Although our model ventilated box allowed for µ values of up to µ =35, the
volume of the visualization tank restricted the time over which we were able to run
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experiments. As the saline solution drained out of the lower vent openings it formed
a layer at the base of the visualization tank which deepened over time. Once this
layer reached the base of the ventilated box we had to stop the experiment. We were
therefore unable to reach the final steady state for µ > 10. However, we were able to
reach the peak layer depth, and these results are reported here. In a few experiments
weak background motion in the visualization tank produced a discolouring of the
background due to mixing with the lower layer. However, this mixing was determined
to have negligible effect on the dynamics.

During the initial transients the saline layer rapidly increased in depth indicating
that the draining rate was small compared with the rate of supply to the layer
from the plume. The subsequent development of the stratification within the box was
observed to be dependent on the opening area as described in (i) and (ii) below.

(i) For smaller openings (µ > 1) the plume spread out and the buoyant layer initially
deepened. The layer interface became horizontal and sharper as the initial slumping
phase decayed away and the mixed fluid at the interface was entrained into the
plume. The layer depth increased to a maximum and then decreased to the steady-
state depth. Other than the finite thickness of the initial layer this is qualitatively
in keeping with our model, and with the earlier work (Linden et al. 1990). During
the initial plume outflow and slumping phases, mixing due to shear instabilities and
weak overturning tended to smear and create disturbances on the interface, making
accurate measurement of layer depths difficult. When measurements were made using
DigiFlow a horizontal average of each time frame was taken (excluding the plume
region), and the point of highest vertical gradient in the intensity (buoyancy) profile
was taken to be the interface height. This allowed for a consistent definition for
the interface height measurements over the course of each experiment and from
experiment to experiment. However, before the layer interface sharpened some plume
fluid remained above the reported interface height.

(ii) For sufficiently large opening areas (µ < 1) a different flow regime was observed.
Instead of the hydrostatic two-layer stratification modelled, the interface in the region
below the open vents (the left-hand side of the box) was broken up and mixed by the
jets of ambient fluid flowing through the vents. The interface on the right-hand side
of the box, away from the openings, was also unstable, with waves persisting over
the course of the entire experiment. There was also significant initial overshoot of
the interface height due to these disturbances. The final average interface height was
not observed to vary with µ and was of the order of the plume width at z = H . This
flow regime was not observed by Linden et al. (1990) as their experiments covered
a parameter range of 0.005 <A∗/H 2 < 0.055 or 1.16 <µ< 12.8 (taking C = 0.16).
However, we were able to run experiments over the broader range 0.14 <µ< 34.5.

Two main sets of data were obtained from our experiments: interface heights (peak
and steady state) and time taken to reach the peak and steady-state heights. These
are shown in figures 14 to 17.

The interface height data show good general agreement with the theory for µ > 1,
although the difference between peak and steady-state values from our experiments is
less than that predicted. This is, in part, due to the smearing of the interface described
earlier. As discussed above, we took the interface height to be the level at which the
buoyancy step was steepest. This meant that there was always buoyant fluid above
(that is, outside) the measured layer height. Over time the layer thinned (see figure 13),
due to entrainment into the plume, and errors in ζ associated with this smearing were
reduced. This means that the measurement of ζover will tend to underestimate the layer
thickness and underestimate the extent of the overshoot. Despite this error we have
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Figure 14. Experimental and theoretical values for ζover (diamonds and dashed line) and ζss

(squares and solid line). Note that for µ> 8 we were unable to run the experiments for long
enough to reach a steady state and therefore do not report steady-state interface heights for
this range of µ. Note also that this figure is plotted using semi-log axes rather than the log-log
axes used in some theoretical result figures.
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Figure 15. Theoretical and experimental values of τss, the time taken for the interface to
initially reach the steady-state height. Note that this figure is plotted using semi-log axes rather
than the log-log axes used in some theoretical result figures.

continued to use the point of highest buoyancy gradient as the interface definition as
it allows consistency over time.

For µ < 1 the agreement is very poor and the observed flow differs from that
expected for displacement ventilation flows. It is clear that once the flow breaks
down, the interface height is no longer a function of µ. This flow regime actually
results in the largest overshoot observed occurring at µ values where none is predicted.
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Figure 16. Theoretical and experimental values of τover, the time taken for the buoyant layer
to reach its maximum depth. Note that this figure is plotted using semi-log axes rather than
the log-log axes used in some theoretical result figures.
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Figure 17. Theoretical and experimental values of τss, the time taken for the interface to
settle back to steady state. Note that for µ> 8 we were unable to run the experiments for long
enough to reach a steady state, and therefore do not report steady-state times in this range of
µ. Note also that this figure is plotted using semi-log axes rather than the log-log axes used in
some theoretical result figures.
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Looking at the timescales (figures 15–17), we again see that for µ < 1 there is
poor agreement between theory and experiment due to the different flow regime
observed. For larger values of µ the agreement improves. Two main reasons for these
discrepancies are given, both linked with the very initial transients and associated
mixing which are not accounted for in the model. First, a systematic error is associated
with the measurement of the interface height at any time due to the smearing of the
interface. The second source of discrepancy is also attributed to the initial transient
interfacial mixing as this mixing increases the volume of fluid in the buoyant layer
by entrainment from the layer at ambient density. This will tend to increase the rate
at which the layer thickens and the interface rises, reducing the time taken to reach
the peak and steady-state heights.

4. Conclusions
We have examined, using a combination of laboratory and theoretical modelling,

the transient displacement flows that arise in ventilated boxes when there are sudden
increases in buoyancy flux. Our results show that during the transient period the
ventilation flow rates are less than those established in the steady state and that the
buoyant upper layer can exceed (or overshoot) the steady-state layer depth.

The transients leading to the steady state are governed by the draining (Td) and
filling (Tf ) times, and the dimensionless parameter µ = Td/Tf . The parameter µ is
equivalent to the dimensionless opening area A∗/H 2 identified by Linden et al. (1990).
Our formulation provides an alternative interpretation of this parameter. Rather than
being a geometric statement it characterizes the balance between filling and draining
flows. For large values of µ the draining time is larger than the filling time. Therefore
the box will be fuller before the draining flow can balance the filling flow, resulting
in the buoyant layer being deeper. For small µ the draining time is smaller and the
buoyant layer is thinner.

We have also demonstrated the possibility of the layer depth overshooting its
steady-state depth. This behaviour is also controlled by the parameter µ. For µ > µc

overshoot will occur. We calculated this value for point-source and line plumes by
numerical integration of the transient equations. These values were compared to
a theoretical calculation based on drawing an analogy between this system and a
spring–mass–damper system. These two values showed good agreement and indicate
that one should expect overshoot for µ > 0.35 for line plumes and µ > 0.27 for
point-source plumes.

Salt-bath experiments were performed to verify the key theoretical findings. We
measured the peak and steady-state interface heights and the time taken to reach both
these heights. The experimental results showed good agreement with our theoretical
predictions for µ > 1. However, below this value, the finite thickness of the outflow
from the plume and the large volume flow rate through the box meant that a constant-
thickness layer was measured and found to be independent of µ. This constant-
thickness regime has not previously been identified due to a lack of experimental
results for small µ. Although we have identified this new flow regime, more work is
required to fully understand this behaviour.

The authors gratefully acknowledge the financial support of BP through their
Advanced Energy in Buildings Programme at Imperial College London.
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Appendix A. Generalized plume scalings
The volume flux Qp and buoyancy g′

p of a self-similar turbulent plume can be
written in terms of powers of the buoyancy flux B , the height z above the source, a
lengthscale L associated with the source, and a constant Ck that is a function of the
plume entrainment coefficient αk and source geometry. In the most general form this
yields

Qp = CkB
izjLk, (A 1)

g′
p =

B

Qp

= C−1
k B1−iz−jL−k. (A 2)

Dimensional arguments can then be used to establish relationships between the
exponents i, j and k. The dimensions of Qp and B are given by [Qp] = l3t−1 and
[B] = l4t−3 which leads to

i = 1
3
, j + k = 5

3
. (A 3)

Two significant cases are worth noting. When j = 5
3

and k = 0 we obtain the
standard scaling for a point-source plume:

Qp = C0B
1/3z5/3 (A 4)

(see Morton, Taylor & Turner 1956), and when j = 1, k = 2
3

we obtain the case of
a line plume for which the volume flux per unit length (Qp/L) may be expressed in
terms of the buoyancy flux per unit length (B/L) as

Qp

L
= C2/3

(
B

L

)1/3

z. (A 5)

In this case L is the length of the line plume. The use of these generalized scalings
enables the development of a single set of equations governing the time-dependent
displacement flows, which can then be solved for different values of j and k, rather
than deriving the equations for line and point-source plumes separately.

Expressions for Ck are determined by solving the conservation equations for the
point-source and line plumes. They are given respectively by

C0 = π

(
5

2πα0

)1/3 (
6α0

5

)5/3

, C2/3 =
(
2α2/3

)2/3
. (A 6)

In this paper the experimental results are scaled using an entrainment coefficient of
α0 = 0.09 which results in a value of C0 = 0.16. We did not use line plumes in our
experiments.

Appendix B. Initial values
Writing ζ = ζ0 + ζ ′, δ = δ0 + δ′, and τ = τ0 + τ ′ we obtain

dδ

dτ
≈ δ′

τ ′ ≈
1 − (1 − √

µτ ′)j (1 + δ′)

1 − (1 − √
µτ ′)

. (B 1)

In the limit as τ ′ → 0 we obtain

dδ

dτ
=

j

2

√
µ at τ = 0. (B 2)
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